O' LEVEL BASIC QUALITATIVE ANALYSIS EXPOSED

Qualitative analysis is the determination of **elements or ions** present in a given substance by carrying out specific tests and making keen observations of the changes that take place.

In this case the commonly observed changes include the following:

- Colour changes
- Precipitate formed
- Gases evolved
- > Sound
- > Smell e.t.c

AN ION

An ion is an atom or a group of atoms that have charges. The charges may either be positive or negative.

TYPE OF IONS

There are two types of ions

- i. Cations: These are positively charged ions. The common cations identified in O' level chemistry include; Ca^{2+} , Mg^{2+} , Cu^{2+} , Pb^{2+} , Al^{3+} , Zn^{2+} , NH_4^+ , Fe^{2+} , Fe^{3+} .
- ii. Anions: These are negatively charged ions. The common anions identified in O' level chemistry include the following; Cl^- , SO_4^{2-} , CO_3^{2-} , NO_3^- , HCO_3^- , SO_3^{2-} .

IDENTIFICATION OF UNKNOWNS

1. APPEARANCE

Note the color, smell if any and the physical state of the given salt sample or substance

Appearance of the solid sample(color)		Deduction
(observation)		
i.	Black	Oxide of copper, Cu^{2+} probably present
ii.	Blue	Hydrated salt of copper, $\mathcal{C}u^{2+}$ probably
		present
iii.	Green	Hydrated salts of copper(II) or Iron(II), $\mathcal{C}u^{2+}$ or
		Fe^{2+} probably present
iv.	Yellow/brown	Lead(II)oxide(in case of solid) or Iron(III) salt
		probably present

V.	White solid	Salts of Ca^{2+} , Mg^{2+} , Pb^{2+} , Al^{3+} , Zn^{2+} , NH_4^+ , probably
		present

NB:

- If the substance is a **crystalline solid** then; **Sulphate, Nitrate or a Chloride** is probably present
- If the substance is in **powder** form then **carbonates** are more likely
- If the substance is **deliquescent** then **chloride ion** is probably present

2. ACTION OF HEAT ON A SUBSTANCE

Heat a little of the substance in a dry test tube until no further change occurs. Note what happens and test for the gas evolved.

Observat	ion	Deduction
i.	Colourless condensate which turns white anhydrous copper(II) sulphate crystals to blue	Water of crystallization(hydrated salt) present or may be HCO_3^- present
ii.	Brown fumes of a gas which turn damp blue litmus paper red are evolved	NO_2 gas, NO_3^- probably present
iii.	Coluorless gas with a pungent chocking smell which turns damp red litmus paper blue is evolved and forms white fumes with <i>HCl gas</i>	Ammonia gas, NH_4^+ probably present
iv.	White sublimate formed on the cooler parts of the test-tube	NH_4^+ salt present
V.	Residue is yellow when hot and white when cold	ZnO formed, Zn^{2+} present
vi.	Residue is brown(Red) when hot and yellow when cold	PbO formed, Pb^{2+} present
vii.	The solid turns from blue/ green to black	CuO is formed, Cu^{2+} present
viii.	The solid turns from blue to white. Droplets of a colorless liquid are formed at the cooler parts of the test-tube	Anhydrous copper (II) sulphate is formed. Water of crystallization(hydrated salt) present
ix.	Colourless gas which relights a glowing splint is given off	Oxygen gas, NO_3^- probably present

X.	Colourless gas which turns	CO_2 gas, CO_3^{2-} or HCO_3^- probably present
	damp blue litmus paper	
	red(pink) and lime water milky	

3. IDENTIFICATION OF GASES

This is also very important in qualitative analysis because it gives clue to the ions present in the given sample

Gas	Color and smell	Test	Observation
Carbon dioxide	Colourless and	Bubble gas into lime	Lime-water turns milky
(acidic)	odourless	water	
Oxygen	Colourless and	Lowering a glowing	Splint
	odourless	splint in a tube	rekindles(relights)
Ammonia	Colourless and	 Expose to 	 Litmus paper
(alkaline)	chocking smell	damp red	turns blue
		litmus paper	
		 Expose to 	 Dense white
		hydrogen	fumes are
		chloride	formed
		fumes	
Nitrogen dioxide	Brown fumes and	Expose to damp blue	Litmus paper turns red
(acidic)	irritating smell	litmus paper	
Hydrogen chloride	Colourless and	Expose to ammonia	Dense white fumes
(acidic)	irritating smell	fumes	
Sulphur dioxide	Colourless	 Bubble it 	• $K_2Cr_2O_7$ turns
(acidic)		through	from orange to
		acidified	green
		$K_2Cr_2O_7$	 KMnO₄turns
		 Or acidified 	from purple to
		$KMnO_4$	colourless

NB:

All acidic gases turn damp blue litmus paper to red while alkaline gases e.g ammonia gas turns red litmus blue.

4. SOLUBILITY OF A SUBSTANCE

Here take note of whether the substance completely or partly dissolves in a given solvent (e.g. water). Also take note of the colour of the resultant solution formed.

Obsei	rvation	Deduction
i.	White solid dissolves forming a	Ca^{2+} , Mg^{2+} , Pb^{2+} , Al^{3+} , Zn^{2+} , NH_4^+
	colourless solution	probably present
ii.	Brown/yellow solid dissolves	Fe^{3+} probably present
	forming a brown or yellow	
	solution	
iii.	Green solid dissolves forming a	Fe^{2+} probably present
	green solution	
iv.	Blue/ green solid dissolves giving	Cu^{2+} probably present
	a blue or green solution	

N.B

- All nitrates are soluble in water
- \triangleright All K^+ , NH_4^+ , Na^+ salts are soluble in water
- All carbonates are insoluble in water except carbonates of potassium, sodium and ammonium.
- \blacktriangleright All sulphates are soluble except $CaSO_4$ which is sparingly soluble. BaSO₄ and PbSO₄ are insoluble in water
- ➤ All chlorides are soluble in water except PbCl₂ which is sparingly soluble and AgCl which is insoluble in water
- All hydroxides are in soluble except those of sodium, potassium and ammonium. Magnesium and calcium hydroxides are sparingly soluble in water.

5. DETECTION OF CATIONS

Cations are detected by use of sodium hydroxide and ammonia solution. In this case take note of whether the precipitate is formed or not and record the colour of the precipitate formed. Take note of whether also the precipitate dissolves in excess or not

a) Addition of sodium hydroxide solution

lon	Test	Observation and equation
NH_4^+	To a solution of NH_4^+ ions in a test- tube add NaOH drop wise until in excess	No observable change. A colourless gas with a pungent chocking smell is given off on warming. The gas turns damp red litmus paper blue and forms dense white fumes with hydrogen chloride gas
Zn^{2+}	To a solution of Zn^{2+} ions in a test-tube add NaOH drop wise until in excess	White precipitate soluble in excess to form a colourless solution
Al ³⁺	To a solution of Al^{3+} ions in a test-tube add NaOH drop wise until in excess	White precipitate soluble in excess to form a colourless solution. $Ionic \ equation:$ $Al^{3+}(aq) + 30H^{-}(aq) \rightarrow Al(0H)_{3}(s)$ White ppt $Al(0H)_{3}(s) + 20H^{-}(aq) \rightarrow Al(0H)_{4}^{-}(aq)$ (Aluminate ion) (colourless)
Pb ²⁺	To a solution of Pb^{2+} ions in a test- tube add NaOH drop wise until in excess	White precipitate soluble in excess to form a colourless solution lonic equation: $Pb^{2+}(aq) + 20H^{-}(aq) \rightarrow Pb(0H)_{2}(s)$ White ppt $Pb(0H)_{2}(s) + 20H^{-}(aq) \rightarrow Pb(0H)_{4}^{2-}(aq)$ Plumbate ion (colourless)

	,	,
Mg^{2+} and	To a solution of Mg^{2+} or Ca^{2+} ions in a test-tube add NaOH drop wise	White precipitate insoluble in excess
Ca^{2+}	until in excess	Ionic equation:
		$Mg^{2+}(aq) + 20H^{-}(aq) ightarrow Mg(0H)_2(s)$ White ppt
		$Ca^{2+}(aq) + 20H^{-}(aq) \rightarrow Ca(0H)_{2}(s)$ White ppt
Cu^{2+}	To a solution of Cu^{2+} ions in a test- tube add NaOH drop wise until in	A pale blue precipitate insoluble in excess
	excess	Ionic equation:
		$Cu^{2+}(aq) + 20H^{-}(aq) \rightarrow Cu(0H)_2(s)$ A pale blue ppt
		N.B The pale blue ppt turns black on heating
		due to formation of <i>CuO</i>
		$Cu(OH)_2(s) \rightarrow CuO(s) + H_2O(l)$
Fe ²⁺	To a solution of Fe^{2+} ions in a test- tube add NaOH drop wise until in excess	A dirty green precipitate insoluble in excess. The dirty green precipitate turns brown on standing due to oxidation of Fe^{2+} to Fe^{3+}
		Ionic equation:
		$Fe^{2+}(\mathbf{aq}) + \mathbf{20H}^{-}(\mathbf{aq}) \rightarrow \mathbf{Fe(0H)}_{2}(\mathbf{s})$ A dirty green ppt
		N.B oxidation reaction $4 \operatorname{Fe}(OH)_2(s) + O_2(g) \rightarrow Fe_2O_3.2H_2O(s)$
Fe ³⁺	To a solution of Fe^{3+} ions in a test- tube add NaOH drop wise until in	A brown or yellow precipitate insoluble in excess.
	excess	Ionic equation:
		$Fe^{3+}(aq) + 30H^{-}(aq) \rightarrow Fe(0H)_{3}(s)$ A brown/yellow ppt

SUMMARY

Add sodium hydroxide solution drop-wise until in excess

Observation	Deduction
No observable change. A colourless gas with a pungent chocking smell that turns damp red litmus paper blue is evolved on heating. The gas also forms white fumes with hydrogen chloride gas	Ammonia gas, NH ⁺ ₄ present
White precipitate soluble in excess	Pb^{2+} , Al^{3+} , Zn^{2+} probably present
White precipitate insoluble in excess	Ca^{2+} , Mg^{2+} probably present
A pale blue precipitate insoluble in excess	Cu^{2+} present
 A dirty green precipitate insoluble in excess and turns brown on standing 	Fe ²⁺ present
A brown precipitate insoluble in excess	Fe^{3+} present

b) Addition of ammonia solution

Ion	Test	Observation and equation
Zn^{2+}	To a solution of Zn^{2+} ions in a test-	White precipitate soluble in excess to form a
	tube add ammonia solution drop wise until in excess	colourless solution
		Ionic equation:
		$Zn^{2+}(aq) + 2OH^{-}(aq) \rightarrow Zn(OH)_2(s)$ White ppt
		$Zn(OH)_2(s) + 4NH_3(aq) \rightarrow Zn(NH_3)_4^{2+}(aq) + 2OH^-(aq)$ Tetra amine zinc(II)ion (colourless)
Al^{3+}	To a solution of Al^{3+} ions in a test- tube add ammonia solution drop	White precipitate insoluble in excess.
	wise until in excess	Ionic equation:
		$Al^{3+}(aq) + 3OH^{-}(aq) \rightarrow Al(OH)_{3}(s)$
		White ppt

Pb ²⁺	To a solution of Pb^{2+} ions in a test- tube add ammonia solution drop wise until in excess	White precipitate insoluble in excess Ionic equation:
		$Pb^{2+}(aq) + 20H^{-}(aq) \rightarrow Pb(0H)_{2}(s)$ White ppt
Mg^{2+}	To a solution of Mg^{2+} or Ca^{2+} ions	White precipitate insoluble in excess
and Ca^{2+}	in a test-tube add ammonia solution	Louis counting
Ca-	drop wise until in excess	Ionic equation:
		$Mg^{2+}(aq) + 20H^{-}(aq) ightarrow Mg(0H)_2(s)$ White ppt
		$Ca^{2+}(aq) + 20H^{-}(aq) \rightarrow Ca(0H)_{2}(s)$ White ppt
Cu^{2+}	To a solution of Cu^{2+} ions in a test- tube add ammonia solution drop wise until in excess	A pale blue precipitate soluble in excess to form a deep solution
	Wise until in execss	Ionic equation:
		$Cu^{2+}(aq) + 20H^{-}(aq) \rightarrow Cu(0H)_2(s)$
		A pale blue ppt
		$Cu(OH)_2(s) + 4NH_3(aq) \rightarrow Cu(NH_3)_4^{2+}(aq) + 2OH^-(aq)$ Tetra amine copper(II) ions
		Deep blue solution
Fe^{2+}	To a solution of Fe^{2+} ions in a test-	A dirty green precipitate insoluble in excess.
	tube add ammonia solution drop wise until in excess	The dirty green precipitate turns brown on standing due to oxidation of Fe^{2+} to
	wise until in excess	Fe^{3+}
		Ionic equation:
		$Fe^{2+}(aq) + 20H^{-}(aq) \rightarrow Fe(0H)_{2}(s)$
		A dirty green ppt
		N.B oxidation reaction
Fe^{3+}	To a solution of Fe^{3+} ions in a test-	$4 \operatorname{Fe}(OH)_2(s) + O_2(g) \rightarrow Fe_2O_3.2H_2O(s)$
re"	tube add ammonia solution drop	A brown or yellow precipitate insoluble in excess.
	wise until in excess	Ionic equation:
		$Fe^{3+}(aq) + 3OH^{-}(aq) \rightarrow Fe(OH)_{3}(s)$
		A brown/yellow ppt

SUMMARY

Add ammonia solution drop-wise until in excess

Observation	Deduction
White precipitate soluble in excess	Zn^{2+} present
White precipitate insoluble in excess	Ca^{2+} , $Mg^{2+}Pb^{2+}$, Al^{3+} probably present
A pale blue precipitate soluble in	Cu^{2+} present
excess to form a deep blue solution	
 A dirty green precipitate insoluble in 	Fe^{2+} present
excess and turns brown on standing	
 A brown precipitate insoluble in excess 	Fe ³⁺ present

6. **CONFIRMATORY TESTS FOR CATIONS.**

CATIONS	CATIONS	OBSERVATION	
Pb ²⁺	Heat suspected solid	 Residue is brown when hot and yellow when cold 	
	 Add potassium iodide solution 	A yellow precipitate	
		$Pb^{2+}(aq) + 2I^{-}(aq) \rightarrow PbI_{2}(s)$ A yellow ppt	
	 Add dilute hydrochloric acid solution 	A white precipitate which dissolves on warming to give a colourless solution and reforms on cooling	
		$Pb^{2+}(aq) \ + 2Cl^{-}(aq) ightarrow PbCl_2(s)$ A white ppt	
	 Add dilute sulphuric acid solution 	A white ppt of PbSO ₄ is formed	

	Add potassium chromate solution	• A yellow precipitate of potassium chromate is formed $Pb^{2+}(aq) + CrO_4^{2-}(aq) \rightarrow PbCrO_4(s)$ A yellow ppt
Cu ²⁺	Heat suspected solid	Turns black on heating
	Add sodium hydroxide solution drop-wise until in excess	A pale blue precipitate insoluble in excess. The ppt turns black on heating
		Ionic equation:
		$\mathit{Cu}^{2+}(aq) + 20 \mathrm{H}^{-}(aq) ightarrow \mathrm{Cu}(0\mathrm{H})_2(s)$ A pale blue ppt
	Add ammonia solution drop- wise until in excess	A pale blue precipitate soluble in excess to form a deep solution
		Ionic equation:
		$Cu^{2+}(aq) + 20H^{-}(aq) \rightarrow Cu(0H)_{2}(s)$ A pale blue ppt
		$\begin{array}{c} \textit{Cu}(\textit{OH})_2(s) \ + 4 \text{NH}_3(aq) \rightarrow \text{Cu}(\text{NH}_3)_4^{2+}(aq) + 2 \text{OH}^-(aq) \\ \\ \text{Tetra amine copper(II) ions} \\ \\ \textbf{Deep blue solution} \end{array}$
	Add potassium or sodium iodide solution	A white precipitate is formed in a brown solution
		$2\mathcal{C}u^{2+}(aq) + 4\mathbf{I}^{-}(aq) \rightarrow \mathbf{C}u_2\mathbf{I}_2(s) + \mathbf{I}_2(aq)$
Zn^{2+}	Heat suspected solid	Residue is yellow when hot and white when cold

	Add sodium hydroxide solution drop-wise until in excess	White precipitate soluble in excess to form a colourless solution
		Ionic equation:
		$Zn^{2+}(aq) + 20H^{-}(aq) \rightarrow Zn(0H)_2(s)$ White ppt
		$Zn(OH)_2(s) + 2OH^-(aq) \rightarrow Zn(OH)_4^{2-}(aq)$ Zincate ion (colourless)
	Add ammonia solution drop- wise until in excess	A white precipitate soluble in excess to form a colourless solution Ionic equation:
		$Zn^{2+}(aq) + 20H^{-}(aq) \rightarrow Zn(0H)_2(s)$ A white ppt
		$Zn(OH)_2(s) + 4NH_3(aq) \rightarrow Zn(NH_3)_4^{2+}(aq) + 2OH^-(aq)$ Tetra amine zinc(II) ions colourless solution
NH ₄ ⁺	 Add dilute sodium hydroxide and warm gently, test with a damp red and blue litmus paper 	 A colourless gas with a pungent chocking smell that turns damp red litmus paper blue was evolved
	Heat the suspected solid	A white sublimate formed at the cooler parts of the test-tube
Fe ²⁺	 Add potassium hexacyanoferrate(III) solution 	A deep blue ppt is formed
Fe ³⁺	 Add potassium hexacyanoferrate(II) solution 	A deep blue ppt is formed
	 Add potassium or ammonium thiocyanate solution 	Deep red solution is formed
	 Add potassium or ammonium thiocyanate solution 	Deep red solution is formed

7. **DETECTION OF ANIONS**

Dissolve a little of the substance in cold water, then carry out the identification test for the anion

ANION	Test	Observation	Deduction
CO ₃ ²⁻ or HCO ₃ ⁻	To the solid add dilute acid	Effervescence of a colourless gas which turns lime water milky and damp blue litmus red	Carbon dioxide gas, CO_3^{2-} or HCO_3^- probably present
	Heat the solid except Na_2C0_3 and K_2C0_3	Evolution of a colourless gas which turns lime water milky and damp blue litmus red	Carbon dioxide gas, CO_3^{2-} or HCO_3^- probably present
SO ₄ ²⁻	Add barium nitrate followed by dilute nitric acid	White ppt insoluble in the acid $Ba^{2+}(aq) + SO_4^{2-}(aq) \rightarrow BaSO_4(s)$	SO_4^{2-} present
	Add barium chloride followed by dilute nitric acid	White ppt insoluble in the acid $Ba^{2+}(aq) + SO_4^{2-}(aq) \rightarrow BaSO_4(s)$	SO_4^{2-} present
	Add lead(II) nitrate solution and warm the mixture	White ppt insoluble on warming $Pb^{2+}(aq) + SO_4^{2-}(aq) \rightarrow PbSO_4(s)$	SO_4^{2-} present
NO ₃	Heat the suspected salt	Brown fumes of a gas are produced and a colourless gas which relights a glowing splint	Nitrogen dioxide gas and oxygen gas evolved, NO ₃ present
	Add cold freshly prepared Iron(II) sulphate solution followed by concentrated sulphuric acid drop by drop down the side of the test-tube	Brown ring is formed at the interface between the acid and the mixture	NO [−] ₃ present
SO ₃ ²⁻	Add lead(II)nitrate solution followed by dilute nitric acid	White ppt formed soluble in the acid forming a colorless solution	SO_3^{2-} present

	Add barium nitrate(chloride) followed by few drops of nitric(hydrochloric) acid	White ppt formed soluble in the acid forming a colorless solution	SO_3^{2-} present
Cl ⁻	Add silver nitrate solution	White ppt formed $Ag^+(aq) + Cl^-(aq) \rightarrow AgCl(s)$	<i>Cl</i> ⁻ present
	Add silver nitrate solution followed by excess ammonia	White ppt formed which dissolves in excess ammonia	<i>Cl</i> ⁻ present
	Add lead(II) nitrate solution and warm the mixture	White ppt soluble on warming and insoluble on cooling	<i>Cl</i> ⁻ present
		$Pb^{2+}(aq) + 2Cl^{-}(aq) \rightarrow PbCl_2(s)$	

8. **DIFFERENTIATING SOME ANIONS**

i. CO_3^{2-} and HCO_3^{-}

Reagent: Magnesium sulphate solution

Observation: With CO_3^{2-} , a white precipitate of MgSO₄ is formed while with HCO_3^- there is no observable change

ii. SO_4^{2-} and Cl^-

Reagent: lead (II) nitrate solution followed by warming

Observation: With SO_4^{2-} , a white precipitate insoluble on warming is formed while with Cl^- a white precipitate soluble on warming is formed

iii. SO_3^{2-} and SO_4^{2-}

Reagent: lead (II) nitrate solution followed by dilute nitric acid

Observation: With SO_4^{2-} , a white precipitate insoluble in the acid is formed while with SO_3^{2-} a white precipitate soluble in the acid is formed forming a colourless solution